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Foreword

Decisions are crucial. Some are quite complex in nature. Monte Carlo simulations in conjunction
with a conditional risk-map maintain an overview in such situations, thereby facilitating better
decisions. In the following, we will show you how to effortlessly implement better decisions within
Microsoft Excel™ and the associated add-in MC FLO.

Introduction

Just as the layout of the keyboard arrangement of a typewriter aimed to break the flow of typing
as little as possible, the task of the risk matrix is to represent the dangers within a very short time.
Nevertheless, in the early days of the risk matrix, neither the technique of Monte Carlo simulation
nor Bayesian statistics were widely prevalent as decision-making tools under uncertainty, or it
took too much time to calculate all the "risks" consistently, thereby aggregated. According to
economists, the continued widespread use of the risk matrix is due to path dependencies.

Critiques of the risk matrix are numerous (see also our )}, but the alternative quantitative
representation using a tornado graph (which is based on a correlation analysis) is victim of the
mentioned path dependency.

For those people who appreciate quantitative analysis, but still use risk matrices for
communication, MC FLO in conjunction with Microsoft Excel™ can do this without effort.

Objectives

The aim of a quantitative analysis using Monte Carlo simulation and Bayesian statistics is to obtain
an objectively justifiable decision recommendation, considering uncertainty. In the context of
classic corporate planning, the primary goal (“objective”) is to generate an economic profit, which
is subsumed in the following as the "Expected Profit Loss" or EBIT > 0.

The classical planning process often separates drivers: The expenses and revenues which the
company can directly control, as quantities produced and labor costs, are quantified and
accounted in the planning tools. Indirect artefacts that are not directly under control, such as
cyber-attacks, are at best modelled as a scenario, at worst delegated as part of a risk analysis using
a risk matrix, and thus excluded from an integrated quantitative analysis. It gets even worse —
because inefficient — when the drivers are accounted in both corporate planning and risk analysis
without inter-action.

Let's take a closer look at the following . The company operates under
uncertainty and therefore prepares the revenue and expenses stream using random variables.
We assume that both quantities were generated using driver models (on an annual basis).
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Picture 2: Uncertainty regarding revenue

For the following analysis, however, we will focus on the "risk" of a cyber-attack. To ensure
consistency in the planning process with all other driver variables, the company additionally

defined random variables concerning the number of cyber-attacks per month and the severity per
cyber-attack. These values can be obtained through experience or, in the absence of own data,
based on data from comparable companies. By combining severity with the number of cases per

month, the possible expenditure per year can be inferred via the concept of convolution.
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Picture 4: Distribution of compound severity

The driver variables (such as number of attacks, severity) are usually not independent, the degree
of dependency is expressed in the simplest case by a correlation measure 2. Among other things,
the model assumes that there is a negative correlation between the severity caused by cyber-
attacks and the revenue. The structure of the correlation is described by a Clayton copula.

MC FLOsim
support@mcflosim.ch


javascript:
javascript:

MC FLO — The Conditional Risk Matrix. A Data Story _

=Other_varisbles |H9+8FLOsinula_output("Expected_Costs _Cyber Attack™)

........

T80

EEY

200750 12542508

Intro Model  Other variables  Risk_Map_Estimated  Risk_Map_Posterior
Picture 5: Modelling inter-relationships

Once the model has been set up and the simulation has been carried out, it is relevant for the
decision-makers to determine which drivers have the highest impact on the objective (in this case
EBIT, "Expected Profit Loss", with an estimated value of 2.4 MCHF).

This brings us to the conditional risk matrix. All drivers are placed in the known grid (probability
of occurrence and severity) but - according to Bayes' theorem - conditional probabilities and
conditional severities regarding the impact on objectives (target) are used. But first things first.

In the long run a target of EBIT >= 0 is mandatory, so drivers that induce an EBIT of < 0 are to be
regarded as risky. The simulation reveals that in about 26% of all simulated cases an EBIT < 0 is
obtained. This 26% threshold is the "value-at-risk" at EBIT = 0. With the built-in Bayes formulas in
MC FLO a conditional risk-matrix using the traditional charting capabilities of Microsoft Excel™
can be built from scratch. On the x-axis of the conditional risk matrix the conditional probability
on the target variable at the “value-at-risk” level is displayed. It answers the following question:
"What is the probability that EBIT is < 0, given that the driver variable "a" surpasses the "value-
at-risk" threshold?". The severity can be seen on the y-axis of the risk matrix. It answers the
question: "What is the average loss of the target variable (EBIT < 0), given that the driver variable

"a" surpasses the "value-at-risk" threshold?".

For the driver variable "Expected Costs Cyber Attack", the probability is approximately 94% based
on Bayes' theorem. There is a 94% probability that EBIT will be < 0, given that the driver variable
"Expected Costs Cyber Attack" has surpassed the "value-at-risk" threshold at 26%. In this case,
EBIT will be around -4.2 MCHF.
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Picture 6: Conditional risk matrix before observing new data

As can be seen, the variable "Expected Costs Cyber Attack" is the decisive driver variable, and not
the expenses from the operating business. Also critical is the revenue stream, which follows from

the modelled dependence between revenue and cyber-attack severity.
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Picture 7: Correlation between cyber-attack costs and revenue

Given the results from the conditional risk matrix, the company can now derive measures and, for

example, consider a variant that would increase investment in the IT infrastructure in combination
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with a decreased expectation of the number of cyber-attacks. After all, the company can accept
the risks described above and follow a "wait-and-see" strategy.

Despite the advantages of a simulation over mere point estimates and the coherent presentation
of the outcome in the conditional risk matrix, every model must measure itself against reality and
learn from it. This is where the Bayesian view of statistics helps decision-makers to refine their
beliefs. To put it simply, let's assume that the uncertainty on sales and expense, the severities in
the event of a cyber-attack as well as the assumed correlations are unchanged compared to the
status before the data was measured, however, the number of cyber-attacks has to be adapted
on the basis of the observed new data (see cells C28:C31).

If it is assumed that every cyber-attack follows a Poisson distribution. The posterior distribution
of the cyber-attacks weights the initial beliefs — using Bayes’ theorem - with the new data to obtain
a new forecast for the end of the year ("Latest Estimate"). While the assumed number of cyber-
attacks per month was 4 before the new data was measured, this drops to about 3 attacks per
month based on the measured data from January-April. As the observed data is now part of the
forecast, uncertainty decreases.

Ultimately, the probability of measuring EBIT < 0 at the end of the year has fallen to around 15%,
resulting in a new estimated EBIT of 3.6 MCHF per EoY. As a result, the driver variables take an
adjusted position in the conditional risk matrix. Given the new observed data, the conditional risk
matrix can show the relevant driver variables and thus guide the decision makers.

With each new data set, the prediction can be refined and adjusted consistently. It is therefore
the instrument that puts the combination of initial beliefs and data on a scientific basis.
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1See also The Risk Matrix Approach: Strengths and Limitations (garp.org)

2To determine the correlation, the (linear) Pearson correlation coefficient can be used,
alternatively the (non-linear) Spearman Rank correlation coefficient. Copulas are used to describe
the structure of dependency, such as the Gauss Copula or those named Clayton, Frank, Gumbel
and others. A completely On the other hand, transinformation, which draws on entropy, is not
yet sufficiently anchored.

Remark: the calculations were carried out on Microsoft Excel for Office and with the Monte Carlo
Add-In MC FLO. MC FLO is available in German, English and Spanish.

Training video of MC FLO and Bayesian analysis: https://youtu.be/dNz9YTgyK14

Please let us know if you have any questions.
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